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Brans type-I black holes is a peculiar spherically symmetric solution found in ge-
ometrized gravity theories, since the azimuthal factor of its horizon is divergent or
vanishing under the classical approach of r = 2M . However, if we regard that the
spherically symmetric solution is available only when all physical quantities of black
holes are meaningful, then our investigation would be restricted to a special range of
parameters and hence indicate a definite holographic relation to type-I black holes in
Brans–Dicke theory. After that, we are able to investigate this holographic relation
by making use of the brick-wall method. Drawn a comparison between the arising
result and a simulated entropy formula derived from the thermodynamical evolution, a
variable cut-off factor α of Brans type-I black holes is ultimately carried out.
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1. INTRODUCTION

In 1960s, Brans and Dicke developed a new relativistic theory of gravity
(Brans, 1962; Brans and Dicke, 1961). This theory can be regarded as an economic
modification of general relativity, which accommodates both Mach’s principle
and Dirac’s large number hypothesis as new ingredients. It may be the most
well-known alternative theory of classical gravity to Einstein’s general relativity.
Comparing with general relativity, there is a scalar field which can describe the
gravity in Brans–Dicke theory, besides the metric of space–time, which describes
the geometry. As a beginning, we may write down the action of Brans–Dicke
theory as follow
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here gµν is the metric tensor, g the determinant of the metric tensor, R is a curvature
scalar of space–time, ω is the parameter of Brans–Dicke theory, � is a scalar field
of gravity. The corresponding field equation reads
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Ever since the Brans–Dicke theory first appeared, four forms of the exact static
spherically symmetric vacuum solutions have been found in Brans (1962). Its
Brans type-I black holes solution reads
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Here M is the mass of black holes, Q and χ are two numbers satisfying the
following equation,

Q2 +
(

1 + ω

2

)
χ2 − Qχ − 1 = 0. (6)

Obviously, Brans type-I black holes solution will be degenerated into a trivial
solution—the Schwarzschild solution, when Q → 1, χ → 0. In addition, there is
one point in solution (4) should be of particular note. That is not only the radial
factor of its horizon is divergent, but the azimuthal factor of its horizon is also
divergent or vanishing under the classical approach of r = 2M . In history, there is
controversy about the existence of nontrivial Brans–Dicke black holes. Hawking
(1972) has firstly proved that any stationary black hole solution in Brans–Dicke
theory, if it satisfies the weak energy condition, must be identical with that in
general relativity. However, Campanelli and Loust (1993) have pointed out that in
Brans–Dicke theory the nontrivial spherically symmetric solutions of black hole
different from Schwarzschild solutions must be existent. For example, Brans type-
I solutions contain the nontrivial spherically symmetric solutions of Brans–Dicke
theory. Kim (1997) has also argued that this fact was not in conflict with Hawking
Theorem, because these nontrivial Brans type-I solutions violate the weak energy
condition.

In addition, recent work Campanelli and Loust (1993), and Zaslavskii (2002),
especially for Kang began to propose a certain nondecreasing quantity defined on
the event horizon which is proportional to the thermodynamical entropy of black
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holes in Brans–Dicke theory in Kang (1996), has heralded a renewed interest in
Brans type-I black holes. Kang’s proposition reads

Sbht = 1

4

∮
H

d2x
√

h�(x). (7)

Obviously, here the area–entropy relation is modified for black holes in Brans–
Dicke theory. Note that the proof of previous equation does not require the exis-
tence of regular event horizon like Hawking’s area theorem. Kang accomplished
the proof of the non-decrease of this quantity under the assumption of the pos-
itivity of the scalar field � and the coupling constant ω in Brans–Dicke theory.
The positivity of ω is natural since, otherwise, it gives unphysical negative energy
matter in the theory. But for �, as far as we know, we have not found any physi-
cal system in the literature which shows the vanishing of �. Hence, we suppose
that this new formula of the entropy would be available to stationary black holes
in Brans–Dicke theory. Before applying it to type-I black holes solutions, we
calculate the integral:

1

4

∮
r=rh+	

d2x
√

h�(x) = π (2M)1+Q− χ

2 	1−Q+ χ

2 . (8)

Obviously, the entropy vanishes under the classical approach to r = 2M . There-
fore, we have to integrate previous formula on the radius of r = rh + 	 and 	

is a little quantity. When 	 is in limit to a zero, this integral can be identified to
the thermodynamical entropy of Brans–Dicke black hole demonstrated in Eq. (8).
Since an infinite or vanishing black hole entropy may be not desirable in physics,
we have to restrict our discussion to the case of

1 − Q + χ

2
= 0. (9)

Therefore, the nonvanishing entropy of Brans type-I black hole may be written as:
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4

∮
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√

h�(x)

= π (2M)1+Q− χ

2

= π (2M)2. (10)

It is to say that a nontrivial Brans type-I black hole satisfying condition (9) is of
the entropy equal to the Schwarzschild case. However, the entropy formula stated
in Eq. (1) is derived from the simulation of the thermodynamics of Brans type-I
black holes. In theoretical, the entropy (1) of black holes must be inspected further
by its corresponding microscopic statistical mechanism.

On the other hand, since the work of Bekenstein (1973) and Hawking (1971,
1974, 1975) our knowledge about black hole physics has improved quite con-
siderably. Moreover, black hole physics is also the main study leading towards
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understanding of gravity in extreme conditions, and as a consequence, of quan-
tum gravity. This led ’t Hooft (1993) and Susskind (1995) to generalize the area
law relating entropy and the area of a black hole to any gravitational system by
means of the introduction of the holographic principle, which in the last several
years turned into a powerful means to the understanding of possible ways to-
wards the quantization of gravity. This point motivates us to perform a deeper
study of the thermodynamics of the black hole solution of Brans–Dicke the-
ory. Meanwhile, the brick-wall method (Abdalla and Alejandro Correa-Borbonet,
2002; ’t Hooft, 1993, 1985) as a statistical approach to interpret the entropy of
black holes has been studied much in Einstein’s theory. For these reasons, we
are also interested in investigating the holographic relation of Brans type-I black
holes on the level of its microscopic statistics by making use of the brick-wall
model.

2. BEKENSTEIN BOUND IN BRANS–DICKE GRAVITY

Within the framework of general relativity theory, Bekenstein (1973) has
proposed that there exists a universal upper bound to the entropy-to-energy ratio
of any system of total energy E and effective proper radius α given by the inequality

S/E ≤ 2πα. (11)

This bound has been checked in many physical situations, either for systems with
maximal gravitational effects or systems with negligible self-gravity.

In this section, we intend to consider how this bound behaves in Brans–Dicke
gravity. Considering a neutral body of rest mass m, and proper radius α which
is dropped into the Brans type-I black hole, we demand that this process should
satisfy the generalized second law (GSL).

Following Carter (1968) and using the constants of motion

E = −πt = −gtt ṫ , (12)

m =
√

−gαβP αP β, (13)

we get the equation of motion of the body on the background of (4)

E = m
√−gtt . (14)

The energy at r = rh + ε is given by

E = m
( ε

2M

)Q−χ

2
. (15)

In order to find the change in the black hole entropy caused by the assimilation
of the body, one should evaluate E at the point of capture, a proper distance α



Holographic Principle of Black Holes in Brans–Dicke Theory 475

outside the horizon

α =
∫

rh

rh+ε√
grr dr

= (2M)
Q

2
ε1− Q

2

1 − Q

2

. (16)

The validity of the proper distance requires 2 > Q. The assimilation of the body
results in a change dM = E in the black hole mass. Using the first law of thermo-
dynamics

dM = T dS, (17)

and the temperature relation

κ2 = −1

2
(∇aξb)(∇aξb),

κ = |Q − χ |
2

(
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r

)Q− χ

2 −1 2M

r2
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We get the black hole entropy increases as

(dS)bh = 2 − Q

|Q − χ | 2πmα. (19)

However, we know according to GSL, that the relation (	S)T ≡ (dS)bh − Sbo ≥ 0
must be satisfied. This implies that the upper limit for the entropy of the body in
Brans–Dicke gravity should be

Sbo ≤ 2 − Q

|Q − χ | 2πEα. (20)

3. STATISTICAL ENTROPIES

Next we check the holographic relation of this kind of black holes by making
use of the brick-wall method. Firstly, we consider a minimally coupled scalar field,
which satisfies the Klein–Gordon equation (’t Hooft, 1993)

1√−g
∂µ(

√−ggµν∂νφ) − m2φ = 0. (21)

The ’t Hooft method consists in introducing a brick-wall cutoff near the event
horizon rh, such that the boundary condition

φ = 0, for r ≤ rh + ε, (22)

φ = 0, for r ≥ L � rh, (23)
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is introduced. In the spherically symmetric space, the decomposition of the scalar
field is given by

φ(t, r, θ, ϕ) = e−iEtR(r)Y (θ, ϕ). (24)

Substituting this form into field equation (21) under the background of Brans–
Dicke type-I black hole, we have
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The eigenvalue equation of spherical function Y (θ, ϕ) has been well resolved as

λ = l(l + 1), for l = 0, 1, 2, 3, . . . (26)

Using the WKB approximation, we substitute ρ(r)eiS(r) for R(r), here the
function ρ(r) is a slowly varying amplitude and S(r) is a rapidly varying phase.
We obtain
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Then we get the radial wave number K ≡ ∂rS,
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The number of radial modes nr is given by

πnr =
∫ L

rh+ε

drK(r, l, E). (29)

For the partition function is
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where ENτ
is the total energy corresponding to the quantum state τ , and nτ repre-

sents the set of quantum numbers associated to this system. The product
∏

takes
the contribution from all the modes into account. So the free energy in this model is

F = 1

β

∫
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∫
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Integrating by parts, we get
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We can regard the discrete variable l(l + 1) as a continuous one. Then we have
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To simplify our calculation, we set m = 0, and we have
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S = β2 ∂F

∂β

= 8π3

45β3

∫ L

rh+ε

dr r2

(
1 − 2M

r

)1−3Q+ 3
2 χ

. (35)

It is not difficult to find that the event horizon of type-I black hole is
just rh = 2M . According to Taylor expansion approximation we finally get the
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result as
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Here the contribution from the next higher power of ε has been removed for that
the brick-wall method requires a small cut-off factor. So far as the brick-wall
method is available in our case, a finite number of the statistical entropy further
requires that −3Q + 3

2χ + 2 < 0. Interestingly, this requirement is automatically
contained in the previously given parameter space (9). Furthermore, we can
recall the definition of the surface gravity in (18) and a finite temperature
(κ = |Q − χ | 1

4M
) of Brans type-I black holes is also available in the range of (9).

According to our knowledge of black hole thermodynamics, there should be
a term in (36), which means the contribution of the black hole. The fact is just
so. If we regard those terms which contain the infrared cutoff L as a contribution
from the background, those terms which are not relevant to L should be attributed
to black holes and their quantum correction. The coordinate distance ε has been
transformed into the proper distance α in Eq. (16). Furthermore, according to the
definition of the surface gravity by Wald (1984), the surface gravity of type-I black
holes (set KB = 1) is given by Eq. (18), then we have

β−1 = |Q − χ |
(

ε

rh

)Q− χ

2 −1 2M

4πrh
2
. (37)

The leading contribution of black holes entropy in (36) is of the lowest rank of ε,
then we identify it with

Sbhs = 8π3
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It can also be verified that the statistical entropy formulation would degenerate
into the case of Schwarzschild if Q = 1 and χ = 0.

A physical area law (10), as the holographic principle of type-I black holes
of Brans–Dicke theory, has been has been found in the thermodynamic context.
Comparing the result (38) derived from the brick-wall method with the holographic
relation of (10), we obtain a constraint on the proper distance of Brans type-I black
holes

α =
[

|Q − χ |3
360π

(
3Q − 3χ

2 − 2
)
] 2−Q

2

(2M)Q−1 2

2 − Q
, (39)

which can also be further checked by its Schwarzschild limit. After we set Q = 1
and χ = 0, we can get π = 1

360
4
α2 from Eq. (39). It is consistent with the result of

statistical interpretation of Schwarzschild black hole entropy derived in Einstein’s
theory. If such a statistical interpretation for nontrivial Brans type-I black holes is
valid, then the proper distance α turns out to be a variable quantity. The running of
α may attribute to the variability of Newton’s constant G in Brans–Dicke theory.
However, in aforementioned calculation of statistical entropy, we have assumed
that the coordinate distance ε is a very small number in comparison with the radius
of the horizon. We can check it according to Eqs. (39) and (16), and find that

ε =
[

|Q − χ |3
360π

(
3Q − 3χ

2 − 2
)
]

(2M)−1. (40)

This result implies that the brick-wall method still works in the given range of
parameters.

4. CONCLUSION

A wide literature is present on the application of the brick-wall model to
black holes solutions in Einstein’s gravity theory for statistical interpretation.
At the same time, the peculiarity of Brans type-I black holes has also heralded
a renewed interest in recent years. Therefore, this paper is aimed to check the
holographic principle (10) of black holes in Brans–Dicke theory on the level of
its microscopic statistics by making use of the brick-wall method, and apply the
arising interpretation to the thermodynamical simulated formula. Interestingly, it
turns out that a variable proper distance α must be favored (39) in this case. A
possible explanation for this point is that the Newton’s constant G is also variable
in Brans–Dicke theory and therefore at the end of the calculations always reflects
this character.
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